Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of cavitation in a downstream conduit of the liquid lithium target for international fusion materials irradiation facility

Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Wakai, Eiichi

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05

A liquid-Li free-surface stream is to serve as a beam target (Li target) for the IFMIF. As a major activity for the Li target in the IFMIF/EVEDA, the EVEDA Li test loop (ELTL) was constructed. This study focuses on cavitation-like acoustic noise in a conduit downstream of the Li target. This noise was detected by using acoustic-emission sensors. The intensity of the noise was examined versus cavitation number of the Li target. In addition, a time-frequency analysis for the acoustic signal was performed to characterize the noise. The results are as follows: (1) the intensity of the noise was increased as decreasing the cavitation number; (2) the noise was at first intermittent in a larger cavitation number, subsequently the noise became continuous as decreasing the cavitation number; (3) the noise consisted of a number of a high frequency acoustic emission which occurred in a short duration. For these results, we conclude that cavitation occurred in the downstream conduit.

JAEA Reports

Review of JAERI activities on the IFMIF liquid lithium target in FY2004

Nakamura, Hiroo; Ida, Mizuho*; Matsuhiro, Kenjiro; Fischer, U.*; Hayashi, Takumi; Mori, Seiji*; Nakamura, Hirofumi; Nishitani, Takeo; Shimizu, Katsusuke*; Simakov, S.*; et al.

JAERI-Review 2005-005, 40 Pages, 2005/03

JAERI-Review-2005-005.pdf:3.52MB

The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based Deuterium-Lithium (Li) neutron source to produce intense high energy neutrons (2 MW/m$$^{2}$$) up to 200 dpa and a sufficient irradiation volume (500 cm$$^{3}$$) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid Li flow with a speed of 20 m/s. In target system, radioactive species such as 7Be, tritium and activated corrosion products are generated. In addition, back wall operates under severe conditions of neutron irradiation damage (about 50 dpa/y). In this paper, the thermal and thermal stress analyses, the accessibility evaluation of the IFMIF Li loop, and the tritium inventory and permeation of the IFMIF Li loop are summarized as JAERI activities on the IFMIF target system performed in FY2004.

Journal Articles

Liquid lithium target under steady state ultra high heat load of 1 GW/m$$^{2}$$ range for International Fusion Materials Irradiation Facility (IFMIF)

Nakamura, Hiroo; Ida, Mizuho*; Nakamura, Hideo; Takeuchi, Hiroshi; IFMIF International Team

Fusion Engineering and Design, 65(3), p.467 - 474, 2003/04

 Times Cited Count:4 Percentile:31.59(Nuclear Science & Technology)

IFMIF is an accelerator-based neutron source for development of fusion materials. The Li target system consists of a target assembly, a Li purification system and various diagnostics. An intense deuterium beam power up to 10 MW in a footprint of 20$$times$$5 cm$$^{2}$$ corresponds to ultra high heat flux up to 1 GW/m$$^{2}$$. To handle such an ultra high heat flux, the high-speed liquid Li flow with a velocity of 20 m/s and a concave flow configuration are necessary. According to thermal-hydraulic analysis, an induced centrifugal force (160 G) under the concave back wall of a radius of 25 cm is sufficient for IFMIF operation. To confirm the hydraulic characteristics of Li flow, water jet experiment has been done. Moreover, validation experiment in Li loop is planned. In addition, to control tritium and impurities such as C, N, O below permissible levels, a cold trap and two hot traps are used. These technologies have similarities in plasma facing components in fusion reactor. In presentation, the IFMIF Li target technology and its application of to the plasma facing component will be discussed.

3 (Records 1-3 displayed on this page)
  • 1